} &
Delhi School of Economics
Department of Economics
Entrance Examination for M. A. Fconomics
Option B
June 25, 2005
Time. 3 hours Maximum marks. 100

Instructions. Please read the following instructions carefully.

e Check that your examination has pages 1 to 6 and you have been given a blank
Answer booklet for writing your answers. Do not start writing until instructed to do so
by the invigilator.

s Fill in your Name and Roll Number on the small slip attached to the Answer booklet.
Do not write this information anywhere else on this booklet.

e When you finish, hand in the Answer booklet to the invigilator.

e Do not disturb your neighbours at any time. Anyone engaging in illegal ex-
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Instruction I. Question 1 is compulsory.

Question 1. Indicate the correct choices for A to J.

Answer A, B, C and D using the following information. Consider a Society consists
of individuals. These individuals may belong to various sets called Clubs and/or Tribes.
The collections of Clubs and Tribes satisfy the following rules:

e The entire Society is a Club.

¢ The empty subset of Society is also a Club.

e Given a collection of Clubs, the set of individuals who belong to at least one of these
Clubs is also a Club.

s Given any two Clubs, the set of individuals who belong to both Clubs is also a
Club.

e A set of individuals is called a Tribe if and only if the set of individuals not in it

constitute a Club.

A. The union of two Tribes is necessarily
(a) a Club
(b) a Tribe
(¢) not a Club
(d) not a Tribe

B. The intersection of a collection of Tribes is necessarily
{a) not a Club
{b) not a Tribe
(c} a Club
(d) a Tribe
C. Which of the following statements is necessarily true?
{(a) A set of individuals cannot be a Tribe and a Club.
{b) There are at least two sets of individuals that are both a Club and a Tribe.
(c) The union of a collection of Tribes is a Tribe.

{d) The intersection of a collection of Clubs is a Club.

D. Suppose we are given a Club and a Tribe. Then, the set of individuals who belong to
the given Club but not to the given Tribe necessarily constitute

(a) a Club ‘

(b) a Tribe

(¢} neither a Club, nor a Tribe

(d) a Club and a Tribe
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E. A number of mathematicians in the middle of the 20th century contributed to a series
of books published in the name of a fictitious mathematician called Bourbaki. Suppose
a sociological critic of science asserts “There exists a book by Bourbaki such that every
chapter in that book contains a theorem whose validity depends on the reader’s gender.”
If this assertion is false, which of the following assertions must be true?

{(a) Every book by Bourbaki contains a chapter such that the validity of some theorem
in that chapter is independent of the reader’s gender.

(b) Every chapter in every book by Bourbaki contains a theorem whose validity is
independent of the reader’s gender.

(¢) There exists a book by Bourbaki such that every chapter in it contains a theorem
whose validity is independent of the reader’s gender.

(d) Every book by Bourbaki contains a chapter such that the validity of all the theo-

rems in it is independent of the reader’s gender.

F. Suppose X and Y are independent random variables with standard Normal distribu-
tions. The probability of X < —1 is some p € (0,1). What is the probability of the event:
X?>land V3 < —17 -

(a) 3p

(b) p?

(c) 27

(d) 3p°
G. There are three identical boxes, each with two drawers. Box A contains a gold coin in
each drawer. Box B contains a silver coin in each drawer. Box C contains a gold com in
one drawer and a silver coin in another drawer. A box is chosen, a drawer opened and a
gold coin is found. What is the probability that the chosen box is A?

(a) 2/3

(b) 1/3

(c) 1/2

(d) 3/4
H. A random variable has outcomes Success and Failure with probabilities 3/4 and 1/4
respectively. A gambler observes the sequence of outcomes of this variable and receives a
prize of 2" if n is the first time that Success occurs. What is the expected value of the

gambler’s prize?

(a) 1
(b) 2 1)
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Answer I and J using the following inforiiation. Suppose n voters use the following

procedure to find their leader. Each voter is given a coin that has probability 1/2 of falling
Heads and probability 1/2 of falling Tails. Each voter tosses his/her coin. A person is
chosen leader if his/her toss outcome is different from that of the other n — 1 persons’
tosses. This procedure is iterated until a leader is determined.
1. The probability of finding a leader in the k-th iteration of the procedure is
(a) 217 m(1 — 217)F 1
(b) n2} (1 — 2t )R
(c) n27 (1 — n27m)FL
(d) 2771 — 27!
1. If n = 3, then the probability of finding a leader in up to two iterations is
(a) 7/16 ‘
(b) 15/16
{c) 39/64
(d) 15/64

Instruction II. Answer any two out of Questions 2, 3 and 4.

Question 2. Let {F, | n € N'} be a family of nonempty closed subsets of the Euclidean
space RP with F) bounded and Fi,41 C F, for every n € N. Show that NaenFy # 0.

Question 3. Consider a metric space (X, d). _

(A) Show that if = is a convergent sequence in (X, d), then it is a Cauchy sequence in
(X,d).

Suppose {X,d) is complete. Let f : X — X be a contraction, i.e., there exists
8 € (0,1) such that, for all z,y € X, we have d(f(z), f{¥)) < Bd(z,y)- Let zp € X. Define
the sequence z inductively by the formula z, = flzng) forneN.

(B) Show that z is a Cauchy sequence, and therefore convergent.

(C) Show that a limit point of z, say a, is a fixed point of f, i.e., a = fla).

(D) Show that f has a unique fixed point.

Question 4. A set X C R" is called a cone in R* if z € X implies tx € X for every
t € R,. Given a cone X in ®", a function f : X — ® is said to be positive homogeneous
of degree k € R if f(tzx) = tk f(z) for every T € X and every t € Ry
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(A) Let X be the interior of a cone in #" and let f: X — R be differentiable on X.
Show that f is positive homogeneous of degree k if and only if kf(x) = Df(x).x for every
T WX s

(Notation: D f(z) is the derivative of f at z and D f(z).z is the (unitary) inner product
of Df(z) and z.)

(B) Let X be the interior of a cone in ®" and let f : X — R be differentiable on
X. Show that, if f is positive homogeneous of degree k, then the partial derivative D; f is

homogeneous of degree k ~ 1 fori=1,...,n.
Instruction ITI. Answer either Question 5 or 6.

Question 5. Suppose If is a vector space with U as the set of vectors and V is a vector
space with V' as the set of vectors. Let L£(U{, V) be the space of linear transformations from
Uto V. Let I € £(V,V) denote the identity transformation on V. Given P € £(V, V), let
R p be the range space of PP and let Ap be the null space of P. .

P e £{V,V) is called a projector of V if

(a) V=Rp & Np, and

{b) for every u € Rp and w € Np, we have P(u -+ w) = u.
Prove the following propositions for P € £(V, V).

(A) P is a projector of V if and only if it is idempotent, i.e., P2 = P. .

(B) If U is a vector space and X € L(U{,V) with Rp = Rx, then P is a projector if
andonlyif PX=X.

(C) P is a projector if and only if I — P is a projector.

Question 6. Suppose V is a vector space with V as the set of vectorsand {.,.) : VxV — R
is an inner product on V. Let W be a subspace of V with the set of vectors W. Let
OW) = Nzewl{y €V | {z,y) = 0}.

{A) Show that O(W) is a subspace of V.
{e1,-.-,¢:} C V is called an orthonormal set if for all ¢,7 € {1,...,r},

_e _ L fi=7j
(ciicj)_élj_{()’ j_f';':#j'
A basis {e1,...,¢-} for V is called an orthonormal basis if {¢1,...,c,} is an orthonormal
set. -

(B) Show that, if {c1,...,¢,} is an orthonormal basis for V, then y = >, (w,ci}ei
foreveryye V.
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Fact: If V is finite dimensional, then every orthonormal subset of V' can be extended
to an orthonormal basis for V.

(C) Use the Fact to show that, if V is finite dimensional and W is a subspace of V,
then W@ O(W) = V. -

Instruction IV. Answer either Question 7 or 8.

Question 7. (A} A number X and a sequence of numbers {¥;, | n € N'} are drawn from
the uniform distribution on [0,1]. Let N = inf{n € N | ¥;, > X}. The player conducting
these draws receives the prize Rs. (N — 1). Calculate the expected value of this prize.
(B) Suppose X and Y are independent real-valued random variables whose distribu-
tions have densities f and g respectively. Let Z = X + Y. Derive the density of the

distribution of Z if
: de 2 ifx>0

0, otherwise

)=

and
1, H#ye(0,1)

g(y) = {0, otherwise

Question 8. (A) In an opinion poll it is assumed that an unknown proportion p of the
people are in favour of a proposed new law and a proportion 1 —p are against it. A spmple
of n people is taken to obtain their opinion. The proportion § in favour in the sample
is taken as an estimate of p. Using the Central Limit Theorem, determine how large a
sample will ensure that the estimate will, with probability 0.95, be correct to within 0.0t

" (B) Suppose X and Y are independent real-valued random variables whose distribu-
tions have densities f and g respectively. Let Z = X + Y. Derive the density of the
distribution of Z if

Fla) = {)\e_)‘m, if &> 0
0, otherwise

and

pe ¥, ify>0
0, otherwise
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