DSE 2004 Answer Key
Prepared by: Amit Kumar Goyal ${ }^{1}$

Part I

1.(b) only proposition (i) is true
2.(b) there exists a solar system in the milky way galaxy such that every planet in it has a moon revolving around it without any life forms
3.(c) $x_{1}=y_{1}$, for $x_{1} \in[0,1000]$
4.(c) $x_{1}=y_{1}$, for $x_{1} \in[0,1000]$
5.(d) both α and β are pareto efficient
6.(b) $x_{1}=999$ and $y_{1} \in[999,1000]$
7.(a) $(1,0)$
8.(c) $s_{1}=(3-4 c) /(3-2 c)$ and $s_{2}=2 c /(3-2 c)$
9.(b) no
10.(a) $\frac{1}{2}$
11.(d) produce nothing in Plant 1
12.(c) $\frac{1}{4}$
13.(a) $(-5 / 2,0)$
14.(d) $\sqrt{200}-10$
15.(b) $((10-\sqrt{200}) / 4,(10-\sqrt{200}) / 6)$
16.(a) deficit decreases by $15-\sqrt{200}$
17.(d) removing the water subsidy and providing a lump-sum subsidy.
18.(b) $\frac{\mu \beta+\alpha}{P[\mu(1-c)+\alpha \lambda]}$
19.(e) $\frac{\mu}{[\mu(1-c)+\alpha \lambda]}$
20.(d) $Y=f\left(\frac{1}{2}\right)$
21.(b) $\max \left\{W_{0}, P / 2\right\}$
22.(a) $\min \left\{\frac{1}{2}, 1-W_{0} / P\right\}$
23.(c) $f\left(\frac{1}{2}\right)$
24.(c) Y does not decrease and P increases
25.(b) Y does not increase and P decreases
26.(c) $2 / 3$
27.(d) $3 / 32$
28.(a) $2 / 3$
29.(c) 7.4
30.(d) $2 p^{2}$

[^0]
Part II

1. (A) Effect of a marginal increase in G on AD:
$Y=C(Y-T)+I(r)+G, M / P=L(Y, r)$
Differentiating totally,
$\left(1-C_{Y}\right) d Y-I_{r} d r=d G$
$L_{Y} d Y+L_{r} d r=d M / P$
Solving,
$d Y / d G=L_{r} /\left(L_{r}\left(1-C_{Y}\right)+I_{r} L_{Y}\right)$
Refer book for explanation
(B) Refer book for explanation
2. (A) (a) $n p(1-p)\left(p^{n-2}+(1-p)^{n-2}\right)$
(b) $\left(1-n p(1-p)\left(p^{n-2}+(1-p)^{n-2}\right)\right)^{k-1}$ $\times\left(n p(1-p)\left(p^{n-2}+(1-p)^{n-2}\right)\right)$
(B) (a) $a=1 / 48$
(b) $7 / 24$
(c) $3 / 4$
3. (A) $f\left(x_{1}, x_{2}\right)=x_{2} g\left(x_{1} / x_{2}\right)($ by CRS)
$\mathrm{MP}_{1}=g^{\prime}\left(x_{1} / x_{2}\right)$
$\mathrm{MP}_{2}=g\left(x_{1} / x_{2}\right)-\left(x_{1} / x_{2}\right) g^{\prime}\left(x_{1} / x_{2}\right)$ $\mathrm{MP}_{11}=\left(1 / x_{2}\right) g^{\prime \prime}\left(x_{1} / x_{2}\right)<0$
Hence, $\mathrm{MP}_{12}=-\left(x_{1} /\left(x_{2}\right)^{2}\right) g^{\prime \prime}\left(x_{1} / x_{2}\right)>0$ Similarly, $\mathrm{MP}_{21}>0$
(B) For $a_{33} \neq 3$

Economic interpretation : For $a_{33} \neq 3$, the three securities when combined appropriately can generate any return.
(c) To show : f is convex if and only if $\{(x, r) \mid f(x) \leq r\}$ is convex.
Suppose f is convex.
To show: $\{(x, r) \mid f(x) \leq r\}$ is convex
Let $\quad\left(x_{1}, r_{1}\right), \quad\left(x_{2}, r_{2}\right)$ belongs to $\{(x, r) \mid f(x) \leq r\}$. So, $f\left(x_{1}\right) \leq r_{1}$ and $f\left(x_{2}\right) \leq r_{2}$ Take $0<t<1$, we want to show that $f\left(t x_{1}+(1-t) x_{2}\right) \leq t r_{1}+(1-t) r_{2}$ By convexity of function, $f\left(t x_{1}+(1-t) x_{2}\right) \leq$ $t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right) \leq t r_{1}+(1-t) r_{2}$.
Now suppose $\{(x, r) \mid f(x) \leq r\}$ is convex
To show: f is convex.
$\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$ belongs to $\{(x, r) \mid f(x) \leq r\}$. Since the set is convex, $\left(t x_{1}+(1-t) x_{2}, t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)\right)$ belongs to $\{(x, r) \mid f(x) \leq r\}$. This implies f is convex.
4. (A) (a) $\mathrm{SC}=p_{x} x+\left(25 p_{y}\right) / x$
(b) $\mathrm{LC}=10 \sqrt{p_{x} p_{y}}$
(c) $x=5 \sqrt{\frac{p_{y}}{p_{x}}}$
(d) $x=3.5 \sqrt{\frac{2 p_{y}}{p_{x}}}$
(B) Member 1 will veto b. Member 2 will veto d. Member 3 will veto c.

[^0]: ${ }^{1}$ Contact: amit.kr.goyal@gmail.com

