ISI ME I - 2016

1. (c) 6
2. (b) $\frac{\partial^{2} f}{\partial x^{2}}\left(x^{*}\right) \leq 0$ is a necessary condition for x^{*} to be a point of local maximum of f on A
3. (d) None of the above
4. (a) 924
5. (c) $\frac{2}{3}$
6. (d) 1
7. (d) $a=1, b=0$
8. (b) 0.35
9. (a) $(x=1, y=0)$ is a local maximum of f
10. (a) $\frac{x-\sqrt{3}}{1+\sqrt{3} x}$
11. (d) $\frac{1-2 b+a b}{2(a-b)}$
12. (b) $\{x:-2<x<-1\} \cup\{x: 1<x<2\}$
13. (a) $d=\frac{1}{4}$
14. The question is not correct as F is not a valid cdf.

We have changed the question to the following:
Q 14* Suppose F is a cumulative distribution function of a random variable X distributed in $[0,1]$ defined as follows:

$$
F(x)= \begin{cases}a x+b, & \text { if } x \leq a \\ x^{2}-x+1, & \text { otherwise }\end{cases}
$$

where $a \in(0,1)$ and b is a real number. Which of the following is true?
(a) F is continuous in $(0,1)$
(b) F is differentiable in $(0,1)$
(c) F is not continuous at $x=a$
(d) None of the above

A 14^{*} (a) F is continuous in $(0,1)$
15. (c) $x=15, y=5$
16. (d) 1
17. (c) $P\left(\frac{5}{4}\right)=0$
18. (b) $\frac{C(n, 3)}{C(C(n, 2), 3)}$
19. (c) $x=\frac{1}{4}, y=\frac{1}{4}$
20. (c) $F(x)-F(y) \leq(x-y) F^{\prime}(x)$
21. (d) $\frac{a}{N}$
22. (a) $\frac{t-x}{t+b}$
23. (b) 1
24. (a) 66
25. (c) $\frac{1}{2} \ln \left(\frac{5}{2}\right)$
26. (d) f has neither a maximum nor a minimum
27. (a) $\frac{(1-p)^{3}}{1-p^{3}}$
28. (a) $\frac{2}{15}$
29. (a) 0
30. (c) 6

