ISI-Entrance Solutions

Economics

This document contains solutions of 2009 sample exam problems (ME-I, ME-II) for admission to MSQE program of the Indian Statistical Institute.
Disclaimer: The solutions offered in the document can be incorrect, the likelihood of which is very small though, so use at your own risk.

Prepared by: Amit Kumar Goyal
1S1: Year 2009

ME-I

1. (b) $3 / 4$
2. (d) $(1 / 2)^{1 / 3}$
3. $(b)\left(f^{2}(x)-f(x)\right) /(2 f(x)-1)$
4. (a) $1 / 6$
5. (d) $Y=X-1$
6. (c) $\log ((1+e) / 2)$
7. (c) $2 / 9$
8. (c) -1
9. (c) is continuous but not differentiable
10. (c) 21
11. (b) 32
12. (b) $7 / 16$
13. (c) ≥ 3
14. (b) $1 / 3$
15. (d) 5
16. (b) $n>\mu$
17. (b) $f(z)=a z$ for some real number a
18. (a) 0
19. (c) $\mid f^{\prime}(x) g^{\prime}(x) h^{\prime}(x) ; l \mathrm{~m} n ;$ a b c \mid
20. (a) 0
21. (c) c
22. (a) $(m+1)^{n-1}$
23. (b) $A=3 / 4, B=-1 / 4$
24. (d) 9
25. (b) $2 / 3$
26. (a) $(1,0)$
27. (b) 1
28. (b) 9
29. (a) it decreases on the interval $\left[2-3-1 / 2,2+3^{-1 / 2}\right]$
30. (d) 18

ME-II (Only selected problems)

1. (i) less than 1
(ii) $Y^{*}=\left(c_{0}-t_{o} c_{1}+1+G\right) /\left(1-c_{1}\left(1-t_{1}\right)\right)$
(iii) multiplier $=1 /\left(1-c_{1}\left(1-t_{1}\right)\right)$
2. (i) $c_{0}=\omega /(1+\delta) ; c_{1}=(\omega(1+r) \delta) /(1+\delta)$;
(ii) As r increases co stays the same and c_{1} increases.
(iii) $(1+r) \delta=1$
3. (i)

(ii) Show that. $\min \left(2 \alpha x_{1}, \alpha x_{1}+\alpha x_{2}\right)=\alpha \min \left(2 x_{1}, x_{1}+x_{2}\right)$ for $\alpha>0$ (1ts easy) (iii) $C=Q$
4. (i) Entire Edgeworth Box
(ii) 45° line from top left to bottom right in an edgeworth box with price ratio equal to 1 .
(iii) Yes, perfectly competitive outcomes are pareto optimal. No, it does not hold generally in all economies.
5. (i) $p=(20+a) / 4 ; q_{1}=(20-a) / 4 ; q_{2}=(3 a-20) / 4$
(ii) $p_{1}=7.5 ; q_{1}=2.5 ; p_{2}=(a+5) / 2 ; q_{2}=(a-5) / 2$
(iii) Just compare the profits
(iv) $\operatorname{CS}(i)=1 / 2\left\{((20-a) / 4)^{2}+((3 a-20) / 4)^{2}\right\}$
$\operatorname{CS}(i i)=1 / 2\left\{6.25+((a-5) / 2)^{2}\right\}$
6. (i) $q_{1}=\left(120-q_{2}-q_{3}\right) / 2$
(ii) $q_{1}=q_{2}=q_{3}=30$
(iii) Case: Firm 2 and 3 merge
$q_{1}=q_{2}+q_{3}=40$, Firm 1 is better off and $2 \& 3$ are worse off. Case: All three firms merge
All three firms are better off.
7. Do yourself
8. (i) $(1+a) y_{j}-T \geq 2 y_{j}$ for $j \in\{H, L\}$
(ii) High ability person go to college for $T \leq 100$

Low ability person go to college for $T \leq 80$.
(iii) Both high ability and Low ability person will attain education. (iv) Assuming tuition paid by H-type is 100 and L-type is 80 . Total subsidy is $(100-60) \times 5+(80-60) \times 5=300$
x solves the equation where total tax receipts equal subsidy.
$5(x / 100)(150+110)=300$
$x=23.08 \%$
9. Do yourself
10. (i) Lowest marks for which it should admit the first applicant $=50$
(ii) Lowest marks for which it should admit the first applicant $=62.5$ Lowest marks for which it should admit the second applicant $=50$

